Math, asked by ItzIshu, 7 months ago

Prove That :-

 \sqrt{ \frac{1 -  \cos(a) }{1 +  \cos(a) } }  =  \frac{ \sin(a) }{1 +  \cos(a) }

Answers

Answered by RonGamingYT
2

Your Answer is in the Attachment....

Hope it helps you.

# Be Brainly.

Attachments:
Answered by ItzDeadDeal
1

Answer:

  • Question

Prove it

\frac{sin \: a + cos \: a}{sina \: - cos \: a} = \sqrt{ \frac{1 + sin2a}{1 - sin2a} }

\bold{\underline \red{Answer-}} </p><p>

LHS = Prove it

\frac{sin \: a + cos \: a}{sina \: - cos \: a} </p><p>

\begin{gathered}= &gt; \sqrt \green{ \frac{(sin \: a \: + cos \: a) {}^{2} }{(sin \: a \: - cos \: a) {}^{2} } } \\ \\ \\ \\ = &gt; \sqrt \pink{ \frac{ {sin}^{2} a + {cos}^{2} a + 2sin \: a \: cosa}{ {sin}^{2} a + {cos}^{2}a - 2sin \: a \: cosa } } \\ \\ \\ \\ = &gt; \sqrt \blue{ \frac{1 + sin2a}{1 - sin2a} }\end{gathered} </p><p>

Hence, Proved

Similar questions