Math, asked by shhahahwzkzjjs, 1 year ago

prove that

 \sqrt{ \frac{1 +  \cos( \alpha ) }{1 -  \cos( \alpha ) } }  =  \csc( \alpha )  +  \cot( \alpha )

Answers

Answered by mathsstar
33
<b>LHS

 \bf\sqrt{ \frac{1 + \cos( \alpha ) }{1 - \cos( \alpha ) } }

 \bf\sqrt{ \frac{1 + \cos( \alpha ) \times 1 + \cos( \alpha ) }{1 - \cos( \alpha ) \times 1 + \cos( \alpha ) } }

\bf \sqrt{ \frac{(1 + \cos( \alpha )) {}^{2} }{1 - \cos {}^{2} ( \alpha ) } }

 \bf\sqrt{ \frac{(1 + \cos( \alpha )) {}^{2} }{ \sin {}^{2} ( \alpha ) } }

 \bf\frac{1 + \cos( \alpha ) }{ \sin( \alpha ) }

 \bf\frac{1}{ \sin( \alpha ) } + \frac{ \cos( \alpha ) }{ \sin( \alpha ) }

\bf \csc( \alpha ) + \cot( \alpha )

RHS

Hence proved
Answered by Swarup1998
50

Proof :

Now, L.H.S. = \sqrt{\frac{1+cos\alpha}{1-cos\alpha}}

Multiplying both the numerator and the denominator inside the square root by (1+cos\alpha), we get

\to \sqrt{\frac{(1+cos\alpha)(1+cos\alpha)}{(1-cos\alpha)(1+cos\alpha)}}

= \sqrt{\frac{(1+cos\alpha)(1+cos\alpha)}{1-cos^{2}\alpha}}

=\sqrt{\frac{(1+cos\alpha)^{2}}{sin^{2}\alpha}}

         since , sin²α + cos²α = 1

=\sqrt{\bigg(\frac{1+cos\alpha}{sin\alpha}\bigg)^{2}}

=\frac{1+cos\alpha}{sin\alpha}

=\frac{1}{sin\alpha}+\frac{cos\alpha}{sin\alpha}

=cosec\alpha+cot\alpha = R.H.S.

Hence, proved.


artisharma47: how u have wrote in this style , this is not available on this app
Similar questions