prove that
Answers
Answered by
2
Heyy mate ❤✌✌❤
Here's your Answer...
⤴️⤴️⤴️⤴️⤴️⤴️
Here's your Answer...
⤴️⤴️⤴️⤴️⤴️⤴️
Attachments:
AJThe123456:
please mark it as brainliest
Answered by
0
→√(sec²+cosec²)=tan+cot
∞ ∞ ∞
As we know
∞ ∞ ∞
→sec²=1/cos²
→cosec²=1/sin²
→√(1/cos²+1/sin²)=tan+cot
≈≈≈≈≈≈
≈≈≈≈≈≈
→L.H.S.=>√(sin²+cos²/cos²×sin²)
→√(1/cos²sin²)
→Removing root
(1/cos×sin)
1=sin²+cos²
Again putting in place of 1=sin²+cos²
→(sin²+cos²/cos×sin)
→(sin²/cos×sin)+(cos²/cos×sin)
→(sin/cos)+(cos/sin)
→tan+cot=R.H.S.
HENCE L.H.S.=R.H.S.
∞ ∞ ∞
As we know
∞ ∞ ∞
→sec²=1/cos²
→cosec²=1/sin²
→√(1/cos²+1/sin²)=tan+cot
≈≈≈≈≈≈
≈≈≈≈≈≈
→L.H.S.=>√(sin²+cos²/cos²×sin²)
→√(1/cos²sin²)
→Removing root
(1/cos×sin)
1=sin²+cos²
Again putting in place of 1=sin²+cos²
→(sin²+cos²/cos×sin)
→(sin²/cos×sin)+(cos²/cos×sin)
→(sin/cos)+(cos/sin)
→tan+cot=R.H.S.
HENCE L.H.S.=R.H.S.
Similar questions