Math, asked by PragyaTbia, 1 year ago

Prove that.
tan^{-1}[ \sqrt{\frac{1-cosx}{1+cosx}} ] =  \frac{x}{2}

Answers

Answered by hukam0685
0

Formulas used:

 1 - cos \: x = 2 \:  {sin}^{2} ( \frac{x}{2} ) \\  \\  \\ 1 + cos \: x = 2 \:  {cos}^{2} ( \frac{x}{2} ) \\  \\
we have

LHS =
 {tan}^{ - 1} ( \sqrt{ \frac{1 - cos \: x}{1 + cos \: x} } ) \\  \\  \\  =  {tan}^{ - 1}   \sqrt{ \frac{2 {sin}^{2}  ( \frac{x}{2}) }{2 \:  {cos}^{2}( \frac{x}{2} ) } }  \\  \\  \\  =  {tan}^{ - 1}  \sqrt{ {tan}^{2}( \frac{x}{2} ) }  \\  \\  \\  =  {tan}^{ - 1} (tan \:  \frac{x}{2} ) \\  \\  =  \frac{x}{2}
= RHS

HENCE PROVED
Answered by anu544648
0

Formulas used:

\begin{gathered} 1 - cos \:x= 2 \: {sin}^{2} ( \frac{x}{2} ) \\ \\\\ 1 + cos \: x = 2 \: {cos}^{2} ( \frac{x}{2} ) \\ \\\end{gathered}

we have

LHS =\begin{gathered} {tan}^{ - 1} ( \sqrt{ \frac{1 - cos \: x}{1 + cos \: x} } ) \\ \\ \\ ={tan}^{ - 1} \sqrt{ \frac{2 {sin}^{2} ( \frac{x}{2}) }{2 \: {cos}^{2}( \frac{x}{2} ) } } \\ \\ \\ = {tan}^{ - 1} \sqrt{ {tan}^{2}( \frac{x}{2} ) } \\ \\ \\ = {tan}^{ - 1} (tan \: \frac{x}{2} ) \\ \\ = \frac{x}{2} \end{gathered}

HENCE PROVED

Similar questions