Math, asked by PragyaTbia, 1 year ago

Prove that 2 tan⁻¹ 1/2 + tan⁻¹ 1/7 = tan⁻¹ 31/17.

Answers

Answered by hukam0685
2

Formula used:

2 \:  {tan}^{ - 1} x =  {tan}^{ - 1} ( \frac{2x}{1 -  {x}^{2} } ) \\  \\  {tan}^{ - 1} x + {tan}^{ - 1} y = {tan}^{ - 1} ( \frac{x + y)}{1 - xy)}  \\
So,

2 \:  {tan}^{ - 1} ( \frac{1}{2} ) =  {tan}^{ - 1} ( \frac{2 \times  \frac{1}{2} }{1 -  {( \frac{1}{2} )}^{2} } ) \\  \\  =   {tan}^{ - 1} ( \frac{1}{1 -  \frac{1}{4} } ) \\  \\  2 {tan}^{ - 1} ( \frac{1}{2} )=  {tan}^{ - 1} ( \frac{4}{3} ).....eq1

 {tan}^{ - 1} ( \frac{4}{3} ) +  {tan}^{ - 1} ( \frac{1}{7} ) =  {tan}^{ - 1} ( \frac{ \frac{4}{3} +  \frac{1}{7}  }{1 -  \frac{4 }{21} } ) \\  \\  \\  =  {tan}^{ - 1} ( \frac{ \frac{28 + 3}{21} }{ \frac{21 - 4}{21} } ) \\  \\  \\  =  {tan}^{ - 1} ( \frac{31}{17} )
= RHS

HENCE PROVED
Similar questions