Math, asked by unnikrishnans1969, 7 months ago

prove that
tan {}^{2}a -  \tan {}^{2}b =   { \sin }^{2}a -  { \sin }^{2}b \div  { \cos}^{2}a \:  { \cos}^{2}b

Answers

Answered by tushar8138
0

Step-by-step explanation:

solving left hand side

We have

( tan a - Tan b ) ( tan a + tan b )

(sin a / cos a - sin b / cos b ) ( sin a / cos a + sin b / cos b )

so

( sin² a - sin² b ) / cos² a cos ² b

thus

LHS = RHS

Similar questions