Math, asked by SweetRaj, 5 months ago

prove that:-
\tt{(cosec \;theta + cot \;theta) ^2 = sec \:theta +1 / sec \;theta - 1​}

Answers

Answered by Anonymous
95

ᴛᴏ ᴘʀᴏᴠᴇ:-

  • \tt{(cosec \theta + cot \theta)}^{2} = \dfrac{sec \theta + 1}{sec \theta -1}

ᴘʀᴏᴏꜰ:−

\tt LHS = {(cosec \theta + cot \theta)}^{2}

\tt= { \bigg(\dfrac{1}{sin\theta }+ \dfrac{cos\theta}{sin \theta} \bigg)}^{2}

\tt= { \bigg( \dfrac{1 + cos\theta}{sin \theta} \bigg)}^{2}

\tt = { \dfrac{(1 + cos\theta)^{2} }{sin ^{2} \theta}}

\tt = { \dfrac{(1 + cos\theta)^{2} }{1 - cos^{2} \theta}}

\tt = { \dfrac{(1 + cos\theta)^{2} }{(1 + cos \theta)(1 - cos\theta)}}

\tt = { \dfrac{(1 + cos\theta)(1 + cos \theta) }{(1 + cos \theta)(1 - cos\theta)}}

\tt = \dfrac{1 + cos \theta}{1 - cos\theta}

\tt = \dfrac{1 + \dfrac{1}{sec \theta} }{1 - \dfrac{1}{sec \theta} }

\tt = \dfrac{ \dfrac{sec \theta + 1}{sec \theta} }{ \dfrac{sec \theta - 1}{sec \theta} }

\tt= \dfrac{ sec \theta + 1}{ sec \theta - 1}

ʟʜꜱ = ʀʜꜱ

ʜᴇɴᴄᴇ, ᴘʀᴏᴠᴇᴅ!

━━━━━━━━━━━━━━━━━━━━━━

\underline{\pink{\bf{\purple{\dag}\:Have\;a\;look!♡}}}

\boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}}


Anonymous: Nice
Answered by ItzDazzledGurl
15

Answer:

\tt{(cosec \;theta + cot \;theta) ^2 = sec \:theta +1 / sec \;theta - 1}

Similar questions