Prove that the area of an equilateral triangle described on one side of the square is equal to half the area of the equilateral triangle discribed on one of its diagonal.
Or
If the area of two similar triangle are equal, prove that they are congruent.
Answers
Answered by
5
please make the triangle abc
Attachments:
Answered by
2
Step-by-step explanation:
Given :-
→ ∆ABC ~ ∆DEF such that ar(∆ABC) = ar( ∆DEF) .
➡ To prove :-
→ ∆ABC ≅ ∆DEF .
➡ Proof :-
→ ∆ABC ~ ∆DEF . ( Given ) .
Now, ar(∆ABC) = ar( ∆DEF ) [ given ] .
▶ From equation (1) and (2), we get
⇒ AB² = DE² , AC² = DF² , and BC² = EF² .
[ Taking square root both sides, we get ] .
⇒ AB = DE , AC = DF and BC = EF .
[ by SSS-congruency ] .
Hence, it is proved.
Similar questions