Prove that the circle x^2 + y^2 - 6x - 4y + 9 = 0 bisects the circumference
Answers
Answer:
Step-by-step explanation:
7xy
According to to given question:-
Consider Circle A1:-
x²+y²+6x-2y + k = 0
or
(x+3)² + (y-1)² = 10 - k
This is equation ______________ (1)
C2: x²+y²+2x -6y-15=0, or, (x+1)²+(y-3)² = 5²
This is equation ___________________(2)
Circle A2:-
x = -1 + 5 Cos θ and y = 3 + 5 Sin θ
This is equation ______________(3)
This method is called Parametric representation.
Let this be A1
=(-1+5Cosθ, 3+5 Sin θ)
Let this be A2
=(-1-5cosθ, 3-5 Sinθ)
Substituting values form equation (1):-
(2+5 Cos θ)² + (2+5 Sin θ)² = 10-k
This is equation _____________(5)
(2-5 Cos θ)² + (2-5 Sin θ)² = 10-k
This be equation ____________(6)
As per the given steps below:-
20 (cosθ+sinθ) (=) - 20 (cosθ+sinθ)
Cos θ + sin θ = 0
Cosθ = 1/√2 , Sinθ = -1/√2
Therefore,
The points A equals the below given equations
(-1+ 5/√2, 3-5/√2)
B = (-1- 5/√2, 3+5/√2)
Hence, A lies on C1.
(2+5/√2)² + (2-5/√2)² = 10-k
33 = 10 - k
k = - 23
Therefore,
The value of [ k = -23]