Math, asked by GraceS, 11 days ago

Prove that the function
\rm f(x)=\begin{cases}\dfrac{x}{|x|}&\text{if}\:x\neq 0 \\ \\ 1&\text{if}\:x=0\end {cases}
is not differentiable at x=0​

Answers

Answered by ModifiedMax
13

\rm f|x|=\begin{cases}{x}&\text{if}\:x\ge 0 \\ \\ -x&\text{if}\:x<0\end {cases}

\sf{\huge{LHL :-}}

\qquad\quad\sf{\large{\lim_{x\to 0^-=f(x)}}}

\qquad\quad\sf{\large{\lim_{x\to 0^-=\frac{x}{-x}=\lim_{x\to 0^-=-(1)}}}}

\sf{\huge{RHL :-}}

\qquad\quad\sf{\large{\lim_{x\to 0^+=f(x)}}}

\qquad\quad\sf{\large{\lim_{x\to 0^+=\frac{x}{x}=\lim_{x\to 0^+=1}}}}

Answered by 4400aditya
0

Answer:

your answer is in the attachment

Attachments:
Similar questions