Math, asked by Anonymous, 4 days ago

Prove that the given points are concyclic (9, 1), (7, 9), (-2, -12), (6, 10).

Answer with a unique method would be highly appreciable.​

Answers

Answered by mathdude500
30

\large\underline{\sf{Solution-}}

Let assume that centre of circle be (h, k) and radius of circle be r units.

So, equation of circle is

\rm \:  {(x - h)}^{2} +  {(y - k)}^{2} =  {r}^{2}  -  -  - (1) \\

As it is given that circle passes through the point (9, 1).

\rm \:  {(9 - h)}^{2} +  {(1 - k)}^{2} =  {r}^{2} \\

\rm \: 81 +  {h}^{2} - 18h +  {k}^{2} + 1 - 2k =  {r}^{2}  \\

\rm \: {h}^{2} +  {k}^{2}  - 18h - 2k + 82 =  {r}^{2} -  -  - (2)  \\

Also, circle (1) passes through (7, 9)

\rm \:  {(7 - h)}^{2} +  {(9 - k)}^{2} =  {r}^{2} \\

\rm \: 49 +  {h}^{2} - 14h +  {k}^{2} + 81 - 18k =  {r}^{2}  \\

\rm \: {h}^{2} +  {k}^{2}  - 14h  - 18k  + 130=  {r}^{2}  -  -  - (3) \\

Also, given that circle (1) passes through (6, 10)

\rm \:  {(6 - h)}^{2} +  {(10 - k)}^{2} =  {r}^{2} \\

\rm \: 36 +  {h}^{2}  -  12h + 100 +  {k}^{2} - 20k =  {r}^{2} \\

\rm \:  {h}^{2} +  {k}^{2} - 12h - 20k + 136 =  {r}^{2} -  -  - (4) \\

On equating equation (2) and (3), we get

\rm \: {h}^{2} +  {k}^{2}  - 18h - 2k + 82 = {h}^{2} +  {k}^{2}  - 14h  - 18k  + 130

\rm \:   - 18h - 2k + 82 =   - 14h  - 18k  + 130 \\

\rm \:   - 4h + 16k =  48\\

\rm \:  4( - h + 4k) =  48\\

\rm \:   - h + 4k =  12 -  -  -  - (5)\\

On equating equation (3) and (4), we get

\rm \: {h}^{2} +  {k}^{2}  - 14h  - 18k  + 130 =  {h}^{2} +  {k}^{2} - 12h - 20k + 136 \\

\rm \:  - 14h  - 18k  + 130 =   - 12h  -  20k + 136 \\

\rm \:  - 2h  + 2k   = 6\\

On dividing both sides by 2, we get

\rm \:  - h + k = 3 -  -  - (6) \\

On adding equation (5) and (6), we get

\rm \: 5k = 15

\rm\implies \:k \:  =  \: 3 \\

On substituting k = 3 in equation (6), we get

\rm\implies \:h \:  =  \: 0 \\

On substituting the values of h and k in equation (2), we get

\rm \: 0 + 9 - 6 + 82 =  {r}^{2}   \\

\rm \: 85 =  {r}^{2}   \\

\rm\implies \: {r}^{2} = 85 \\

On substituting the values of h, k and r in equation (1), we get

\rm \:  {x}^{2} +  {(y - 3)}^{2} = 85  -  -  - (7) \\

Now, we have to justify whether (-2, - 12) lies on this circle or not.

Substituting (- 2, - 12,) in equation (7), we get

\rm \:  {( - 2)}^{2} +  {( - 12 - 3)}^{2} = 85  \\

\rm \:  4 + 225 = 85  \\

\rm \:  229 = 85  \\

\rm \:  \: which \: is \: not \: possible \\

Hence, points (9, 1), (7, 9), (-2, -12), (6, 10) are not concylic.

Answered by saichavan
24

Correct Question - Prove that the given points are concyclic (9, 1), (7, 9), (-2, 12), (6, 10).

Assume -

g = h

f = k

Attachments:
Similar questions