Prove that the inequality | cos(x)| ≥ 1 − sin^{2} (x) holds true for all x ∈ R.
Answers
Answered by
7
Step-by-step explanation:
Given:
| cos(x)| ≥ 1 − sin2 (x)
To find:
Prove that the inequality | cos(x)| ≥ 1 − sin2 (x) holds true for all x ∈ R.
Solution:
From given, we have,
| cos(x)| ≥ 1 − sin² (x)
upon removing the mod, we get,
cos x ≤ - (1 - sin²x) and cos x ≥ (1 - sin²x)
Now consider,
cos x ≤ - (1 - sin²x)
cos x ≤ - 1 + sin²x
cos x - sin²x + 1 ≤ 0
cos x - (1 - cos²x) + 1 ≤ 0
cos x + cos²x ≤ 0
-1 ≤ cos x ≤ 0
True for all x ∈ R and π/2+2πn ≤ x ≤ 3π/2+2πn .......(1)
Now consider,
cos x ≥ (1 - sin²x)
cos x ≥ 1 - sin²x
cos x + sin²x - 1 ≥ 0
cos x + (1 - cos²x) - 1 ≥ 0
cos x - cos²x + 1 ≥ 1
0 ≤ cos x ≤ 1
True for all x ∈ R and -π/2+2πn ≤ x ≤ π/2+2πn .......(2)
combining equations (1) and (2), we get,
True for all x ∈ R and -π/2+2πn ≤ x ≤ 3π/2+2πn
Similar questions