Math, asked by tanshu12032003owhjy1, 11 months ago

prove that the locus of the midpoint of the portion of line x cos alpha + y Sin Alpha equals to p which is intercepted between the axes given that Alpha is variable is -- one upon X square + 1 upon y square equals to 4 upon p square​

Answers

Answered by MaheswariS
89

Answer:

\bf{\frac{1}{x^2}+\frac{1}{y^2}=\frac{4}{p^2}}

Step-by-step explanation:

Let P(h,k) be the midpoint of the portion of the line

x\:cos\alpha+y\:sin\alpha=p.....(1)

put y=0 in (1), we get

x\:cos\alpha=p

x=\frac{p}{cos\alpha}

put x=0 in(1), we get

y\:sin\alpha=p

y=\frac{p}{sin\alpha}

Therefore, the line (1) meets the coordinate axes at

A(\frac{p}{cos\alpha},0)  and  B(0,\frac{p}{sin\alpha})

Clearly, the midpoint of the Portion AB= P

(\frac{\frac{p}{cos\alpha}+0}{2},\frac{0+\frac{p}{sin\alpha}}{2})=(h,k)

(\frac{p}{2cos\alpha},\frac{p}{2sin\alpha})=(h,k)

\implies\:h=\frac{p}{2cos\alpha},\:\:\:\:k=\frac{p}{2sinalpha}

\implies\:cos\alpha=\frac{p}{2h},\:\:\:\:sin\alpha=\frac{p}{2k}

squaring and adding these equations, we get

cos^2\alpha+sin^2\alpha=\frac{p^2}{4h^2}+\frac{p^2}{4k^2}

\implies\:1=\frac{p^2}{4h^2}+\frac{p^2}{4k^2}

\implies\:1=\frac{p^2}{4}(\frac{1}{h^2}+\frac{1}{k^2})

\implies\:\frac{4}{p^2}=\frac{1}{h^2}+\frac{1}{k^2}

\therefore\text{The locus of P is}

\boxed{\bf{\frac{1}{x^2}+\frac{1}{y^2}=\frac{4}{p^2}}}

Answered by sanskarbansalbtp
4

Answer:

Step-by-step explanation:

Attachments:
Similar questions