Prove that the perpendicular drawn from the point (4 , 1) on the join of (2 , -1) and (6 , 5) divides it in the ratio 5:8.
❌no spam❌
❌spammers stay away❌
⚠spams will be reported⚠
Answers
Refer the following attachment for Step-by-step explanation dear frnd
GM junnu....
here is ur answer:-
Let P(2,4,−1)P(2,4,−1) be the given point and the Line L→x−51=y−34=z−6−9=λL→x−51=y−34=z−6−9=λ
⇒d.r.⇒d.r. of the line L=(1,4,−9)L=(1,4,−9)
Any point Q(x,y,z)Q(x,y,z) on the line L is given by Q(λ+5,4λ+3,−9λ+6)Q(λ+5,4λ+3,−9λ+6)
Let this point QQ be the foot of ⊥⊥ of the point P on the line LL.
d.r of PQ the ⊥⊥
=(λ+5−2,4λ+3−4,−9λ+6+1)=(λ+5−2,4λ+3−4,−9λ+6+1)
=(λ+3,4λ−1,−9λ+7)
∴PQ(1,4,−9)=0∴PQ¯.(1,4,−9)=0
(λ+3,4λ−1,−9λ+7).(1,4,−9)=0(λ+3,4λ−1,−9λ+7).(1,4,−9)=0
⇒(λ+3)1+(4λ−1)4−9(−9λ+7)=0⇒(λ+3)1+(4λ−1)4−9(−9λ+7)=0
⇒λ+3+16λ−4+81λ−63=0⇒λ+3+16λ−4+81λ−63=0
⇒98λ=64⇒98λ=64
⇒λ=3249
PQ is ⊥⊥⊥ to the line L
Substituting λλ in Q we get the foot of ⊥Q⊥Q as
Q(3249Q(3249+5,12849+5,12849+3,−28849+3,−28849+6)+6)
⊥⊥ distance≡PQ =7