Math, asked by haqueaisha32, 1 year ago

Prove that the point A(2,4) B(2,6) C (2+,√3,5) are the vertices of an equilateral triangle

Answers

Answered by yash9733
29
this is the answer of your question
Attachments:

haqueaisha32: Thanks
Answered by guptasingh4564
19

\bigtriangleup ABC an equilateral triangle where all angle are equal to 60 degree.

Step-by-step explanation:

Given;

A(2,4) , B(2,6) and C(2+\sqrt{3},5)

∴Side AB=\sqrt{(y_{2}- y_{1} )^{2}+ (x_{2}- x_{1} )^{2}}

AB=\sqrt{(6-4)^{2}+(2-2)^{2}  }

AB=\sqrt{2^{2} }

AB=2

And, side BC=\sqrt{(y_{3}- y_{2} )^{2}+ (x_{3}- x_{2} )^{2}}

BC=\sqrt{(5- 6 )^{2}+ (2+\sqrt{3} - 2)^{2}}

BC=\sqrt{(- 1 )^{2}+ (\sqrt{3} )^{2}}

BC=\sqrt{1+3}

BC=2

Also, side AC=\sqrt{(y_{3}- y_{1} )^{2}+ (x_{3}- x_{1} )^{2}}

AC=\sqrt{(5-4)^{2}+ (2+\sqrt{3}-2 )^{2}}

AC=\sqrt{(1)^{2}+ (\sqrt{3})^{2}}

AC=\sqrt{1+3}

AC=2

AB=BC=AC

So, If we make \bigtriangleup ABC by point A,B and C.

Then;

\bigtriangleup ABC an equilateral triangle where all angle are equal to 60 degree.

Similar questions