Prove that the points A (1, 7), B (4, 2), C (−1, −1) and D (−4, 4) are the vertices of a square.
Answers
use midpoint formula
AC 1-1/2,7-1/2
0/2,6/2
0,3
BD 4-4/2,2+4/2
0/2,6/2
0,3
As AC and BD are same ,hence proved...
Hope it helps u...
A(1, 7)
B (4, 2)
C (-1, -1)
D (- 4, 4)
Using Distance Formula :-
AB = √(x2 - x1)² + (y2 - y1)²
AB = √(4 - 1)² + (2 - 7)²
AB = √3² + (-5)²
AB = √9 + 25
AB = √34 units
Now, again
Using Distance Formula :-
BC= √(x2 - x1)² + (y2 - y1)²
BC = √(- 1 - 4)² + ( - 2 - 1)²
BC = √(-5)² + (-3)²
BC = √25 + 9
BC = √34 units
Now, Again
Using Distance Formula :-
CD = √(x2 - x1)² + (y2 - y1)²
CD = √(- 4 + 1)² + (4 + 1)²
CD = √(-3)² + (5)²
CD = √9 + 25
CD = √34 units
Also,
Using Distance Formula :-
DA = √(x2 - x1)² + (y2 - y1)²
DA = √(- 4 - 1)² + (4 - 7)²
DA = √(-5)² + 3²
DA = √25 + 9
DA = √34 units
Now, Diagonal
Using Distance Formula :-
BD = √(x2 - x1)² + (y2 - y1)
BD = √(- 4 - 4)² + (4 - 2)²
BD = √(-8)² + 2²
BD = √64 + 4
BD = √68 units
Now, Diagonal
Using Distance Formula :-
AC = √(x2 - x1)² + (y2 - y1)
AC = √(- 1 - 1)² + (-1 - 7)²
AC = √(-2)² + (-8)²
AC = √4 + 64
AC = √68 units
Therefore, we get
AB = BC = CD = DA = √34
Also,
BD = AC = √68
Hence,
Proved