Prove that the points A(6,7), B(– 2,3) and C(8,3) are vertices of a right angled triangle.
Answers
Answered by
14
Given to prove these are the vertices of right angle triangle:–
Explanation:–
A = (6,7 )
B = (-2,3)
C = (8,3)
Let's find the distance between the points by using Distance formula:-
= √(x₁-x₂)² +(y₁-y₂)²
A= (6,7) = (x₁, y₁)
B = (-2,3) = (x₂, y₂)
AB = √[6-(-2)]² + (7-3)²
AB = √(8)²+(4)²
AB = √64+16
AB = √80
AB = 4√5
B = (-2,3) = (x₁ , y₁)
C = (8,3) = (x₂, y₂)
BC = √(-2-8)²+(3-3)²
BC = √(-10)² +(0)²
BC = √100
BC = 10
C= (8,3)= (x₁ , y₁)
A= (6,7)= (x₂, y₂)
CA = √(8-6)² +(3-7)²
CA = √(-2)² +(-4)²
CA = √4 + 16
CA = √20
CA = 2√5
Now, Let's verify them by Pythagoras theorem .
AB² + CA² = BC²
(4√5 )² +(2√5 )² = (10)²
16(5) + 4(5) = 100
80+20 =100
100=100
Since ,it satisfies Pythagoras theorem
So, given vertices are vertices of Right angle triangle.
Hence proved ![tex][/tex]
Similar questions