Math, asked by ADITRISRIVASTAVA, 1 year ago

Prove that the points P (0, -4), Q (6, 2),
R (3, 5) and S (-3, -1) are the vertices of a
rectangle PQRS.

plz \: answer \: its \: urgent <br />\: i \: will \: mark \: brainliest

Answers

Answered by sayansarkar12
7

AT FIRST YOU DRAW THE GRAFT YOUR ANSWER WILL BE READY

TRY THIS I AM SURE THAT YOU WILL GET YOUR ANSWER..

*#*FOLLOW ME*#*

Answered by harendrachoubay
25

The points P (0, -4), Q (6, 2),  R (3, 5) and S (-3, -1) are the vertices of a  rectangle PQRS, proved.

Step-by-step explanation:

Given,

The four points P (0, - 4), Q (6, 2),  R (3, 5) and S (- 3, - 1) are the vertices of a rectangle PQRS.

Using distance formula,

\sqrt{(x_{2}-x_{1} )^{2}+(y_{2}-y_{1} )^{2}}

∴ PQ = \sqrt{(6-0)^{2}+(2+4)^{2}}

=\sqrt{(6)^{2}+(6)^{2}} =\sqrt{36+36} = \sqrt{72}

QR = \sqrt{(3-6)^{2}+(5-2)^{2}}

=\sqrt{(-3)^{2}+(3)^{2}}=\sqrt{9+9}=\sqrt{18}

RS = \sqrt{(-3-3)^{2}+(-1-5)^{2}}

=\sqrt{(-6)^{2}+(-6)^{2}}=\sqrt{36+36} =\sqrt{72}

SP = \sqrt{(-3-0)^{2}+(-1+4)^{2}}

=\sqrt{(-3)^{2}+(3)^{2}}=\sqrt{9+9} =\sqrt{18}

∴ PQ = RS = \sqrt{72} and

QR = SP = \sqrt{18}

Diagonals,

PR =\sqrt{(3-0)^{2}+(5+4)^{2}}

=\sqrt{(3)^{2}+(9)^{2}}=\sqrt{9+81} =\sqrt{90}

QS = \sqrt{(-3-6)^{2}+(-1-2)^{2}}

=\sqrt{(-9)^{2}+(-3)^{2}}=\sqrt{81+9} =\sqrt{90}

Diagonal PR = Diagonal QS = \sqrt{90}, proved.

Thus, the points P (0, -4), Q (6, 2),  R (3, 5) and S (-3, -1) are the vertices of a  rectangle PQRS, proved.

Similar questions