Prove that the relation R and Q (the set of rational numbers) defined by
(a, b) ER=1+ab > 0 is not an equivalence relation.
Attachments:
Answers
Answered by
0
3+2+4+4
x^{3}+x^{2}+4x+4x3+x2+4x+4
3+4+2+4
3+4+2+4
{\color{#c92786}{x^{3}+4x}}+x^{2}+4x3+4x+x2+4
(2+4)+2+4
3+2+4+4
x^{3}+x^{2}+4x+4x3+x2+4x+4
3+4+2+4
3+4+2+4
{\color{#c92786}{x^{3}+4x}}+x^{2}+4x3+4x+x2+4
(2+4)+2+4
3+2+4+4
x^{3}+x^{2}+4x+4x3+x2+4x+4
3+4+2+4
3+4+2+4
{\color{#c92786}{x^{3}+4x}}+x^{2}+4x3+4x+x2+4
(2+4)+2+4
defineProperty(a,b,{value:c,writable:!1})}catch(e){a[b]= c}return c}function va(a,b){var ... appendChild(d)} function ea(a,b){return function(c,e){function g(){wa(b,c ,d ... You can still see all customer reviews for the product.
Similar questions