Math, asked by lebogangmello8, 3 months ago

prove that the roots of x²+(1-k)x+k-3=0 are real for all real values of k​

Answers

Answered by amansharma264
8

EXPLANATION.

Roots of quadratic equation.

⇒ x² + (1 - k)x + k - 3 = 0.

As we know that,

⇒ D = Discriminant or b² - 4ac.

⇒ D = (1 - k)² - 4(1)(k - 3).

As we know that,

Formula of :

⇒ (x - y)² = x² + y² - 2xy.

Using this formula in equation, we get.

⇒ D = (1 + k² - 2k) - 4(k - 3).

⇒ D = 1 + k² - 2k - 4k + 12.

⇒ D = k² - 6k + 13.

Again we factorizes the equation.

⇒ D = (-6)² - 4(1)(13).

⇒ D = 36 - 52.

⇒ D = -16.

For real roots, D ≥ 0.

And the value of this equation is D < 0 it means roots are imaginary.

There is no real values exists in the equation.

                                                                                                                     

MORE INFORMATION.

Nature of the roots of the quadratic equation.

(1) = Real and different, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal or complex conjugate.

Similar questions