Math, asked by Justin1093, 1 year ago

Prove that the square of any positive integer is either of the form 5q or 5q + 1 or 5q+4 for some positive integer q

Answers

Answered by revathilingannagari
2
---------------------------------hellooooo---------------------------------------------------
plzz mark my answer as brainliest and click on heart icon------------------------------

SOLUTION:
        
               Let a be the positive even integer then a is form of 5p
                 2   
               a   =  (5p) square 
                    =  25p square
                    = 5(5p square) {where 5p square = q}
                    =5q

 ---------------  if a is an odd number then a is in form of 5p+1
               2             
             a    = (5p+1 )square
                   = 25p square +1
                   =5(5p square )+1 [where 5p square = q]
                   = 5q  +1
--------------if a is a od number in the form 5p+2
                    2 
                 a     = (5p+2) square 
                        = 25p square +4
                        = 5(5p square)+4  [where 5p square =q]
                        = 5q +4
hence proved
Answered by muskan2807
4

Answer:

please please please mark my answer as brainlist because I wanna reach my next rank

Attachments:
Similar questions