Prove that the square of any positive integer is of the form 3m or, 3m + 1 but not of the form 3m + 2.
Answers
Answered by
25
SOLUTION :
Since positive integer n is of the form of 3q , 3q + 1 and 3q + 2
Case : 1
If n = 3q,then
n² = (3q)²
[On squaring both sides]
n² = 9q²
n²= 3 (3q)²
n² = 3m , where m = 3q²
Case : 2
If n = 3q + 1,then
n² = (3q + 1)²
[On squaring both sides]
n² = (3q)² + 6q + 1²
[(a+b)² = a² + b² + 2ab]
n² = 9q² + 6q + 1
n² = 3q (3q + 2) + 1
n² = 3m +1 , where m = q(3q + 2)
Case : 3
If n = 3q + 2, then
n² = (3q + 2)²
[On squaring both sides]
n² = (3q)² + 12q + 4
[(a+b)² = a² + b² + 2ab]
n² = 9q² + 12q + 4
n² = 3 (3q² + 4q + 1) +1
n² = 3m + 1 , where q = 3q² + 4q + 1
Hence, n² is of the form 3m, 3m + 1 but not of the form 3m +2.
HOPE THIS ANSWER WILL HELP YOU...
Answered by
13
hello mate
here is your solution
Let ' a' be any positive integer and b = 3.
we know, a = bq + r , 0 < r< b.
now, a = 3q + r , 0<r < 3.
the possibilities of remainder = 0,1 or 2
Case I - a = 3q
a2 = 9q2
= 3 x ( 3q2)
= 3m (where m = 3q2)
Case II - a = 3q +1
a2 = ( 3q +1 )2
= 9q2 + 6q +1
= 3 (3q2 +2q ) + 1
= 3m +1 (where m = 3q2 + 2q )
Case III - a = 3q + 2
a2 = (3q +2 )2
= 9q2 + 12q + 4
= 9q2 +12q + 3 + 1
= 3 (3q2 + 4q + 1 ) + 1
= 3m + 1 (where m = 3q2 + 4q + 1)
I hope helps you
here is your solution
Let ' a' be any positive integer and b = 3.
we know, a = bq + r , 0 < r< b.
now, a = 3q + r , 0<r < 3.
the possibilities of remainder = 0,1 or 2
Case I - a = 3q
a2 = 9q2
= 3 x ( 3q2)
= 3m (where m = 3q2)
Case II - a = 3q +1
a2 = ( 3q +1 )2
= 9q2 + 6q +1
= 3 (3q2 +2q ) + 1
= 3m +1 (where m = 3q2 + 2q )
Case III - a = 3q + 2
a2 = (3q +2 )2
= 9q2 + 12q + 4
= 9q2 +12q + 3 + 1
= 3 (3q2 + 4q + 1 ) + 1
= 3m + 1 (where m = 3q2 + 4q + 1)
I hope helps you
Similar questions