Prove that the sum of square of the diagonals of a parallelogram is equal to the sum of square of its sides?
Plz answer
Answers
Let us drawperpendicular DE on extended side AB, and AF on side DC.
Applying Pythagorastheorem in ΔDEA,we obtain
DE2+ EA2= DA2 …(i)
Applying Pythagorastheorem in ΔDEB,we obtain
DE2+ EB2= DB2
DE2+ (EA + AB)2= DB2
(DE2+ EA2)+ AB2+ 2EA × AB = DB2
DA2+ AB2+ 2EA × AB = DB2 …(ii)
Applying Pythagorastheorem in ΔADF, we obtain
AD2 = AF2+ FD2
Applying Pythagorastheorem in ΔAFC, we obtain
AC2 = AF2+ FC2
=AF2 + (DC − FD)2
=AF2 + DC2 + FD2 − 2DC ×FD
=(AF2 + FD2) + DC2 − 2DC ×FD
AC2 = AD2+ DC2 − 2DC × FD … (iii)
Since ABCD is aparallelogram,
AB = CD …(iv)
And, BC = AD …(v)
In ΔDEAand ΔADF,
∠DEA =∠AFD (Both 90°)
∠EAD = ∠ADF (EA|| DF)
AD = AD (Common)
∴ ΔEAD ΔFDA (AAS congruencecriterion)
⇒ EA = DF …(vi)
Adding equations (i)and (iii), we obtain
DA2+ AB2+ 2EA × AB + AD2+ DC2− 2DC × FD = DB2+ AC2
DA2+ AB2+ AD2+ DC2+ 2EA × AB − 2DC × FD = DB2+ AC2
BC2 + AB2+ AD2 + DC2 + 2EA × AB − 2AB ×EA = DB2 + AC2
[Using equations (iv)and (vi)]
AB2+ BC2+ CD2+ DA2= AC2+ BD2
In parallelogram ABCD,
AB=CD and BC=AD
Draw perpendiculars from C and D on AB as shown.
In right angled △AEC,
⇒ (AC)
2
=(AE)
2
+(CE)
2
[ By Pythagoras theorem ]
⇒ (AC)
2
=(AB+BE)
2
+(CE)
2
⇒ (AC)
2
=(AB)
2
+(BE)
2
+2×AB×BE+(CE)
2
----- ( 1 )
From the figure CD=EF [ Since CDFE is a rectangle ]
But CD=AB
⇒ AB=CD=EF
Also CE=DF [ Distance between two parallel lines
⇒ △AFD≅△BEC [ RHS congruence rule ]
⇒ AF=BE [ CPCT ]
Considering right angled △DFB
⇒ (BD)
2
=(BF)
2
+(DF)
2
[ By Pythagoras theorem ]
⇒ (BD)
2
=(EF−BE)
2
+(CE)
2
[ Since DF=CE ]
⇒ (BD)
2
=(AB−BE)
2
+(CE)
2
[ Since EF=AB ]
⇒ (BD)
2
=(AB)
2
+(BE)
2
−2×AB×BE+(CE)
2
----- ( 2 )
Adding ( 1 ) and ( 2 ), we get
(AC)
2
+(BD)
2
=(AB)
2
+(BE)
2
+2×AB×BE+(CE)
2
+(AB)
2
+(BE)
2
−2×AB×BE+(CE)
2
⇒ (AC)
2
+(BD)
2
=2(AB)
2
+2(BE)
2
+2(CE)
2
⇒ (AC)
2
+(BD)
2
=2(AB)
2
+2[(BE)
2
+(CE)
2
] ---- ( 3 )
In right angled △BEC,
⇒ (BC)
2
=(BE)
2
+(CE)
2
[ By Pythagoras theorem ]
Hence equation ( 3 ) becomes,
⇒ (AC)
2
+(BD)
2
=2(AB)
2
+2(BC)
2
⇒ (AC)
2
+(BD)
2
=(AB)
2
+(AB)
2
+(BC)
2
+(BC)
2
∴ (AC)
2
+(BD)
2
=(AB)
2
+(BC)
2
+(CD)
2
+(AD)
2
∴ The sum of the squares of the diagonals of a parallelogram is equal to the sum of squares of its sides.