prove that the sum of the measures of the exterior angles of a quadrilateral is 360
Answers
Answered by
3
quadrilateral have four sides. Each angle in quadrilateral is 90
so a+b+c+d=,360
90+90+90+90=360
so a+b+c+d=,360
90+90+90+90=360
Answered by
127
Statement :
sum of the angles of quadrilateral is 360°
To Prove :
∠A + ∠B + ∠C + ∠D = 360°
Proof :
In ∆ ABC , m∠4 + m∠5+m∠6 = 180°
[ using angle a property of a triangle]
Also , in ∆ ADC , m∠1 + m∠2+m∠3= 180°
Sum of the measures of ∠A, ∠B , ∠C and ∠D of a quadrilateral
m∠4 + m∠5+ m∠6 + m∠1 + m∠2 +m∠3 = 180°+ 180°
→ ∠A + ∠B + ∠C + ∠D = 360°
Thus , sum of measure of four angles of quadrilateral is 360°.
Attachments:
Similar questions