Prove that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.
Plzzzzzz
Answers
Draw perpendiculars from C and D on AB as shown.
In right angled ΔAEC, AC2 = AE2 + CE2 [By Pythagoras theorem]
⇒ AC2 = (AB + BE)2 + CE2
⇒ AC2 = AB2 + BE2 + 2 AB × BE + CE2 → (1)
From the figure CD = EF (Since CDFE is a rectangle)
But CD= AB
⇒ AB = CD = EF
Also CE = DF (Distance between two parallel lines)
ΔAFD ≅ ΔBEC (RHS congruence rule)
⇒ AF = BE
Consider right angled ΔDFB
BD2 = BF2 + DF2 [By Pythagoras theorem]
= (EF – BE)2 + CE2 [Since DF = CE]
= (AB – BE)2 + CE2 [Since EF = AB]
⇒ BD2 = AB2 + BE2 – 2 AB × BE + CE2 → (2)
Add (1) and (2), we get
AC2 + BD2 = (AB2 + BE2 + 2 AB × BE + CE2) + (AB2 + BE2 – 2 AB × BE + CE2)
= 2AB2 + 2BE2 + 2CE2
AC2 + BD2 = 2AB2 + 2(BE2 + CE2) → (3)
From right angled ΔBEC, BC2 = BE2 + CE2 [By Pythagoras theorem]
Hence equation (3) becomes,
AC2 + BD2 = 2AB2 + 2BC2
= AB2 + AB2 + BC2 + BC2
= AB2 + CD2 + BC2 + AD2
∴ AC2 + BD2 = AB2 + BC2 + CD2 + AD2
Thus the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.
Read more on Brainly.in - https://brainly.in/question/1307583#readmore
Answer:
QED
Step-by-step explanation:
ABCD is parrallelogram
AD || BC & AD= BC
AB || CD & AB = CD
Let draw perpendicular DE from D at AB ( Assume E lies on AB)
Let draw perpendicular CF from C at AB ( then F lies on extension of AB)
DE = CF , AE = BF as triangle AED similar to triangle BFC where AD = BC (as perpendicular drawn from a parallelogram)
AC² = (AB + BF)² + CF²
AC² = AB² + BF² + 2AB.BF + CF²
where BC² = BF² + CF²
AC² = AB² + BC² + 2AB.BF - Eq 1
BD² = (AB - AE)² + DE²
BD² = AB² + AE² - 2AB.AE + DE²
where AD² = AE² + DE²
BD² = AB² + AD² - 2AB.AE - Eq2
Now adding eq1 & Eq2
AC² + BD² = AB² + BC² + 2AB.BF + AB² + AD² - 2AB.AE
AC² + BD² = AB² + BC² + AB² + AD² + 2AB.BF - 2AB. AE
BF = AE & AB = CD
AC² + BD² = AB² + BC² + CD² + AD² + 2AB.AE - 2AB. AE
AC² + BD² = AB² + BC² + CD² + AD²
So sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.
QED