Physics, asked by Birni9, 9 months ago

prove that the total work done on a particle is equal to the change in it's kinetic energy​

Answers

Answered by Anonymous
55

Answer:

\underline{\bold{ \mathfrak{WORK-ENERGY \ THEOREM}}}

As we know, Kinetic Energy (K):

 \bold{K =  \frac{1}{2} m {v}^{2} }

Rate of change of Kinetic Energy with time is:

 \sf  \frac{dK}{dt}  =  \frac{d}{dt} ( \frac{1}{2} m {v}^{2} ) \\  \\  \sf =  \frac{1}{2} m \frac{d}{dt} ( {v}^{2} ) \:  \:  \:  \:  \:   \: ...(as \: m \: is \: constant) \\  \\  \sf =  \frac{1}{2} m \frac{d( {v}^{2}) }{dt}  \times  \frac{dv}{dv}  \\  \\  \sf =  \frac{1}{2} m \frac{d ({v}^{2} )}{dv}  \times  \frac{dv}{dt}  \\  \\  \sf =  \frac{1}{ \cancel{2}} m \times  \cancel{2}v \frac{dv}{dt}  \\  \\  \sf = mv \frac{dv}{dt}  \\  \\  \sf = mav \:  \:  \:  \:  \:  \: ...( \frac{dv}{dt}  = a) \\  \\  \sf  = Fv \:  \:  \:  \:  \: ...(F = ma)  \\  \\ \sf = F \frac{dx}{dt}  \:  \:  \:  \:  \:  \: ...(v =  \frac{dx}{dt} )

 \sf  \implies \frac{dK}{ \cancel{dt}}  =   F \frac{dx}{ \cancel{dt}} \\  \\  \sf \implies \int_{K_i}^{K_f} dK = \int_{x_i}^{x_f} Fdx \\  \\  \sf \implies W  = K_f -  K_i \:  \:  \:  \:  \:  \: ...(\int_{x_i}^{x_f} Fdx = W)

(Where  \sf K_f \ and K_i are final and initial kinetic energy corresponding to final  \sf x_f and initial  \sf x_i position respectively.)

 \boxed{ \bold{ \huge{W = \Delta K}}}

Answered by xesta34
1

Answer:

v² = u² + 2as

v² - u² = 2as

mv² - mu² = 2mas

1/2mv² - 1/2mu² = Ga

Final Kinetic energy - Initial Kinetic energy = Work done

W = ΔK

Similar questions