Math, asked by avinkumar090, 1 month ago

Prove that , the vertices of A(-2,3) ,B(4,3), C(4,-1) and D(-2,-1) form a rectangle. ​

Answers

Answered by mathdude500
5

Given :-

A quadrilateral ABCD having coordinates

  • A(-2,3)

  • B(4,3)

  • C(4,-1)

  • D(-2,-1)

To Show :-

  • ABCD is a rectangle.

Concept Used :-

In order to show that ABCD is a rectangle, its enough to show that

  • AB = CD

  • AD = BC

  • AC = BD

Formula Used :-

Distance Formula :-

Let us consider a line segment joining the points A and B, then distance between A and B is

{\underline{\boxed{\rm{\quad Distance \: AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \quad}}}}

Solution :-

Given that,

A quadrilateral ABCD having coordinates

  • A(-2,3)

  • B(4,3)

  • C(4,-1)

  • D(-2,-1)

So,

\rm :\longmapsto\:AB =  \sqrt{ {(4 + 2)}^{2} +  {(3 - 3)}^{2}  }

\rm :\longmapsto\:AB =  \sqrt{ {(6)}^{2} +  {(0)}^{2}  }

\rm :\longmapsto\:AB =  \sqrt{ {(6)}^{2}}

\bf\implies \:AB = 6 \: units

\rm :\longmapsto\:BC =  \sqrt{ {(4 - 4)}^{2}  +  {( - 1 - 3)}^{2} }

\rm :\longmapsto\:BC =  \sqrt{ {(0)}^{2}  +  {( -4)}^{2} }

\rm :\longmapsto\:BC =  \sqrt{ {(4)}^{2} }

\bf\implies \:BC = 4 \: units

\rm :\longmapsto\:CD =  \sqrt{ {( - 4 - 2)}^{2} +  {( - 1 + 1)}^{2}  }

\rm :\longmapsto\:CD =  \sqrt{ {( - 6)}^{2} +  {(0)}^{2}  }

\rm :\longmapsto\:CD =  \sqrt{ {(6)}^{2} }

\bf\implies \:CD = 6 \: units

\rm :\longmapsto\:DA =  \sqrt{ {( - 2 + 2)}^{2}  +  {(3 + 1)}^{2} }

\rm :\longmapsto\:DA =  \sqrt{ {(0)}^{2}  +  {(4)}^{2} }

\rm :\longmapsto\:DA =  \sqrt{ {(4)}^{2} }

\bf\implies \:DA = 4 \: units

\rm :\longmapsto\:AC =  \sqrt{ {(4 + 2)}^{2} +  {( - 1 - 3)}^{2}  }

\rm :\longmapsto\:AC =  \sqrt{ {(6)}^{2} +  {( - 4)}^{2}  }

\rm :\longmapsto\:AC =  \sqrt{ 36 + 16}

\rm :\longmapsto\:AC =  \sqrt{52}

\bf\implies \:\:AC =  2\sqrt{13}  \: units

\rm :\longmapsto\:BD =  \sqrt{ {(4 + 2)}^{2} +  {( - 1 - 3)}^{2}  }

\rm :\longmapsto\:BD =  \sqrt{ {(6)}^{2} +  {( - 4)}^{2}  }

\rm :\longmapsto\:BD =  \sqrt{36 + 16}

\rm :\longmapsto\:BD =  \sqrt{52}

\bf\implies \:BD = 2 \sqrt{13}  \: units

Hence,

\rm :\longmapsto\:AB = CD \\ \rm :\longmapsto\:BC = DA \\ \rm :\longmapsto\:AC = BD

Hence,

  • ABCD is a rectangle.

Additional Information :-

Midpoint Formula :-

Let us consider a line segment joining the points A and B and let C (x, y) be the midpoint of AB, then coordinates of C is

\boxed{ \quad\sf \:( x, y) = \bigg(\dfrac{x_1+x_2}{2} , \dfrac{y_1+y_2}{2} \bigg) \quad}</p><p>

\bf \ Area =\dfrac{1}{2}  [x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]

Section Formula :-

Let us consider a line segment joining the points A and B and let C (x, y) be the point on AB, which divides AB in the ration m : n, then coordinates of C is

\boxed{ \quad\sf \:( x, y) = \bigg(\dfrac{nx_1+mx_2}{m + n} , \dfrac{ny_1+my_2}{m + n} \bigg) \quad}</p><p>

Similar questions