prove that this question
Attachments:
Answers
Answered by
1
Answer:
Step-by-step explanation:
ⁿPr=n!/(n-r)!...........................(1)
Putting n=n-1 and r=r-1
ⁿ⁻¹Pr-1=(n-1)!/{ n-1-(r-1) }
We know that n!=n*(n-1)!, So (n-1)!,=n!/n
So ⁿ⁻¹Pr-1=n!/n/{ n-1-r+1)! }
=n!/ n*(n-r)!
Putting n!/(n-r)!=ⁿPr
ⁿ⁻¹Pr-1 =1/n( ⁿPr)
Hence ⁿPr=n* ⁿ⁻¹Pr-1
Proved
Similar questions