prove that three consecutive integer is divisible by 6.
Answers
Yes, the statement the product of three consecutive positive integers is divisible by 6 is true.
Justification
Let us assume the numbers to be (x), (x + 1), (x + 2).
A number which is divided by 3, will be having the remainder 0 or 1 or 2.
x = 3n or (3n + 1) or (3n + 2)
If x = 3n, then x is divisible by 3
if x = 3n + 1 ,then
x + 2 = 3n + 1 + 2 = 3n + 3
=> x = 3(n + 1) is divisible by 3
if x = 3n + 2,
then x + 1 = 3n + 2 + 1
=> 3n + 3 = 3(n + 1)
so, we can say that one of the numbers n, n + 1 and n + 2 is always divisible by 3.
n (n + 1) (n + 2) is divisible by 3.
Similarly, when a no. is divisible by 2, remainders obtained is 0 or 1.
Thus, x = 2r or (2r + 1)
if x = 2r, then x = 2r and (x + 2) then,2r + 2
=> 2(r + 1) are divisible by 2
if x = (2r + 1), then x + 1 = 2r + 1 + 1 = 2(r + 1)is divisible by 2.
So, we can say that one of the numbers among x, x + 1 and x + 2 is always divisible by 2.
x (x + 1) (x + 2) is divisible by 2.
n (n + 1) (n + 2) is divisible by 2 and 3.
n (n + 1) (n + 2) is divisible by 6.