Prove that total mechanical energy of a free falling object remains always constant.
guy's plz anyone get answer of this question.
Answers
Answer:
- The total Mechanical Energy remains Constant.
Statement:
Law of conservation of energy:
Energy can neither be created nor destroyed but it can be transformed to one form to other form.
Explanation:
Case-1
At this time the body is at Position " A " ,
Where,
- Its Velocity (v) is Zero.
- Its at a Height " h " from the ground.
Now,
⇒ P.E = m g h
Substituting the values,
⇒ P.E = m × g × h
⇒ P.E = m g h J
Now,
⇒ K.E = 1 / 2 m v²
Substituting the values,
⇒ K.E = 1 / 2 × m × (0)²
⇒ K.E = 1 / 2 × 0
⇒ K.E = 0 J
Therefore,
⇒ T.E = K.E + P.E
Substituting the values,
⇒ T.E = 0 + m g h
⇒ T.E = m g h J
∴ The Total Energy (T.E) of the body at position 'A' is m g h Joules.
Case-2
At this time the body is at Position " B " ,
Where,
- Its Velocity (v) is v₁ .
- Its at a Height " (h - s) " from the ground.
- And, has travelled a Distance "s" from top.
Now,
⇒ P.E = m g h
Substituting the values,
⇒ P.E = m × g × ( h - s )
⇒ P.E = m g ( h - s ) J
Now,
⇒ K.E = 1 / 2 m v²
Firstly finding the velocity of the particle,
Applying third Kinematic equation.
⇒ v² - u² = 2 a s
Substituting,
⇒ (v₁)² - 0 = 2 × g × s
⇒ v₁² = 2 g s
⇒ v₁ = √ 2 g s
Substituting the value of velocity in Kinetic Energy.
⇒ K.E = 1 / 2 × m × (v₁)²
⇒ K.E = 1 / 2 × m × (√ 2 g s)²
⇒ K.E = 1 / 2 × m × 2 g s
⇒ K.E = m × g × s
⇒ K.E = m g s
Therefore,
⇒ T.E = K.E + P.E
Substituting the values,
⇒ T.E = m g s + m g ( h - s )
⇒ T.E = m g s + m g h - m g s
⇒ T.E = m g h J
∴ The Total Energy (T.E) of the body at position 'B' is m g h Joules.
Case-3
At this time the body is at Position " C " ,
Where,
- Its Velocity (v) is v .
- Its at a Height " 0 m " from the ground.
- And, has travelled a Distance "h" from top.
Now,
⇒ P.E = m g h
Substituting the values,
⇒ P.E = m × g × 0
⇒ P.E = 0 J
Now,
⇒ K.E = 1 / 2 m v²
Firstly finding the velocity of the particle,
Applying third Kinematic equation.
⇒ v² - u² = 2 a s
Substituting,
⇒ (v)² - 0 = 2 × g × h
⇒ v² = 2 g h
⇒ v = √ 2 g h
Substituting the value of velocity in Kinetic Energy.
⇒ K.E = 1 / 2 × m × (v)²
⇒ K.E = 1 / 2 × m × (√ 2 g h)²
⇒ K.E = 1 / 2 × m × 2 g h
⇒ K.E = m × g × h
⇒ K.E = m g h
Therefore,
⇒ T.E = K.E + P.E
Substituting the values,
⇒ T.E = m g h + 0
⇒ T.E = m g h J
∴ The Total Energy (T.E) of the body at position 'C' is m g h Joules.
Hence Proved!
# Refer the Attachment for figure.
Assumptions:
- " m " is the mass of the body.
- " g " is the acceleration due to gravity.
Answer:
The total Mechanical Energy remains Constant.
Statement:
Law of conservation of energy:
Energy can neither be created nor destroyed but it can be transformed to one form to other form.
Explanation:
$$\rule{300}{1.5}$$
Case-1
At this time the body is at Position " A " ,
Where,
Its Velocity (v) is Zero.
Its at a Height " h " from the ground.
Now,
⇒ P.E = m g h
Substituting the values,
⇒ P.E = m × g × h
⇒ P.E = m g h J
Now,
⇒ K.E = 1 / 2 m v²
Substituting the values,
⇒ K.E = 1 / 2 × m × (0)²
⇒ K.E = 1 / 2 × 0
⇒ K.E = 0 J
Therefore,
⇒ T.E = K.E + P.E
Substituting the values,
⇒ T.E = 0 + m g h
⇒ T.E = m g h J
∴ The Total Energy (T.E) of the body at position 'A' is m g h Joules.
$$\rule{300}{1.5}$$
$$\rule{300}{1.5}$$
Case-2
At this time the body is at Position " B " ,
Where,
Its Velocity (v) is v₁ .
Its at a Height " (h - s) " from the ground.
And, has travelled a Distance "s" from top.
Now,
⇒ P.E = m g h
Substituting the values,
⇒ P.E = m × g × ( h - s )
⇒ P.E = m g ( h - s ) J
Now,
⇒ K.E = 1 / 2 m v²
Firstly finding the velocity of the particle,
Applying third Kinematic equation.
⇒ v² - u² = 2 a s
Substituting,
⇒ (v₁)² - 0 = 2 × g × s
⇒ v₁² = 2 g s
⇒ v₁ = √ 2 g s
Substituting the value of velocity in Kinetic Energy.
⇒ K.E = 1 / 2 × m × (v₁)²
⇒ K.E = 1 / 2 × m × (√ 2 g s)²
⇒ K.E = 1 / 2 × m × 2 g s
⇒ K.E = m × g × s
⇒ K.E = m g s
Therefore,
⇒ T.E = K.E + P.E
Substituting the values,
⇒ T.E = m g s + m g ( h - s )
⇒ T.E = m g s + m g h - m g s
⇒ T.E = m g h J
∴ The Total Energy (T.E) of the body at position 'B' is m g h Joules.
$$\rule{300}{1.5}$$
$$\rule{300}{1.5}$$
Case-3
At this time the body is at Position " C " ,
Where,
Its Velocity (v) is v .
Its at a Height " 0 m " from the ground.
And, has travelled a Distance "h" from top.
Now,
⇒ P.E = m g h
Substituting the values,
⇒ P.E = m × g × 0
⇒ P.E = 0 J
Now,
⇒ K.E = 1 / 2 m v²
Firstly finding the velocity of the particle,
Applying third Kinematic equation.
⇒ v² - u² = 2 a s
Substituting,
⇒ (v)² - 0 = 2 × g × h
⇒ v² = 2 g h
⇒ v = √ 2 g h
Substituting the value of velocity in Kinetic Energy.
⇒ K.E = 1 / 2 × m × (v)²
⇒ K.E = 1 / 2 × m × (√ 2 g h)²
⇒ K.E = 1 / 2 × m × 2 g h
⇒ K.E = m × g × h
⇒ K.E = m g h
Therefore,
⇒ T.E = K.E + P.E
Substituting the values,
⇒ T.E = m g h + 0
⇒ T.E = m g h J
∴ The Total Energy (T.E) of the body at position 'C' is m g h Joules.
Hence Proved!
# Refer the Attachment for figure.
Assumptions:
" m " is the mass of the body.
" g " is the acceleration due to gravity.
$$\rule{300}{1.5}$$