Math, asked by sumitsinghsoni, 7 months ago

prove that trigonometric identity...​

Attachments:

Answers

Answered by piyushsahu624
9

Answer:

sin(α + β) = sin(α) cos(β) + cos(α) sin(β)

sin(α – β) = sin(α) cos(β) – cos(α) sin(β)

cos(α + β) = cos(α) cos(β) – sin(α) sin(β)

cos(α – β) = cos(α) cos(β) + sin(α) sin(β)

\tan(\alpha + \beta) = \dfrac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha) \tan(\beta)}tan(α+β)=  

1−tan(α)tan(β)

tan(α)+tan(β)

​  

 

\tan(\alpha - \beta) = \dfrac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha) \tan(\beta)}tan(α−β)=  

1+tan(α)tan(β)

tan(α)−tan(β)

Step-by-step explanation:

Similar questions