prove that trigonometric identity...
Attachments:
Answers
Answered by
9
Answer:
sin(α + β) = sin(α) cos(β) + cos(α) sin(β)
sin(α – β) = sin(α) cos(β) – cos(α) sin(β)
cos(α + β) = cos(α) cos(β) – sin(α) sin(β)
cos(α – β) = cos(α) cos(β) + sin(α) sin(β)
\tan(\alpha + \beta) = \dfrac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha) \tan(\beta)}tan(α+β)=
1−tan(α)tan(β)
tan(α)+tan(β)
\tan(\alpha - \beta) = \dfrac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha) \tan(\beta)}tan(α−β)=
1+tan(α)tan(β)
tan(α)−tan(β)
Step-by-step explanation:
Similar questions