Prove that twice the area if the parallelogram id equal to the area of another parallelogram formed by taking as it's adjacent side the diagnosis of the former parallelogram
Answers
Answered by
2
Step 1
Let ABCDABCD be a parallelogram .
Consider the parallelogram formed by its diagonals AC−→−andBD−→−AC→andBD→ as adjacent sides
Step 2
The vector are of such a parallelogram would be AC−→−×BD−→−=(AB−→−+BC−→−)×(BA−→−+AD−→−)AC→×BD→=(AB→+BC→)×(BA→+AD→)
=AB−→−×BA−→−+AB−→−×AD−→−+BC−→−×BA−→−+BC−→−×AD−→−=AB→×BA→+AB→×AD→+BC→×BA→+BC→×AD→
=0→+AB−→−×AD−→−−BC−→−×AB−→−+AD−→−×AD−→−=0→+AB→×AD→−BC→×AB→+AD→×AD→
=AB−→−×AD−→−−AD−→−×AB−→−=AB→×AD→−AD→×AB→
=AB−→−×AD−→−+AB−→−×AD−→−=AB→×AD→+AB→×AD→
=2AB−→−×AD−→−=2=2AB→×AD→=2 ( vector area of parallelogram ABCDABCD )
Hence proved
Let ABCDABCD be a parallelogram .
Consider the parallelogram formed by its diagonals AC−→−andBD−→−AC→andBD→ as adjacent sides
Step 2
The vector are of such a parallelogram would be AC−→−×BD−→−=(AB−→−+BC−→−)×(BA−→−+AD−→−)AC→×BD→=(AB→+BC→)×(BA→+AD→)
=AB−→−×BA−→−+AB−→−×AD−→−+BC−→−×BA−→−+BC−→−×AD−→−=AB→×BA→+AB→×AD→+BC→×BA→+BC→×AD→
=0→+AB−→−×AD−→−−BC−→−×AB−→−+AD−→−×AD−→−=0→+AB→×AD→−BC→×AB→+AD→×AD→
=AB−→−×AD−→−−AD−→−×AB−→−=AB→×AD→−AD→×AB→
=AB−→−×AD−→−+AB−→−×AD−→−=AB→×AD→+AB→×AD→
=2AB−→−×AD−→−=2=2AB→×AD→=2 ( vector area of parallelogram ABCDABCD )
Hence proved
Similar questions
English,
8 months ago
Social Sciences,
8 months ago
Art,
8 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago
Biology,
1 year ago
Math,
1 year ago