Math, asked by rishuranjan64, 10 months ago

prove that two lines are perpendicular if the product of their slope is -1​

Answers

Answered by Anonymous
31

\huge\bf{\red{\overbrace{\underbrace{\purple{Given:}}}}}

★Two Non-vertical lines.

\huge\bf{\red{\overbrace{\underbrace{\purple{To\:\:Prove:}}}}}

★The two lines are perpendicular.

\huge\bf{\red {\overbrace{\underbrace{\purple{Concept\:\:Used:}}}}}

★We will trigonometry to formula of slope.

\huge\bf{\red {\overbrace{\underbrace{\purple{Proof:}}}}}

Let

L_{1} \:and\:L_{2} \:be\:two\:non-parallel\:lines.

\theta_{1} & \theta_{2}\:be\:their\:inclinations\: respectively

Now, we know,

\large\green{\boxed{\bf{\red{Slope=\dfrac{y_{2}-y_{1}}{x_{2}-x_{1}}=tan\theta}}}}

So,

Slope of line L_{1} = tan\theta_{1}

{\underline{\boxed{\red{.\degree.m_{1}=tan\theta_{1}}}}}

Slope of line L_{2} = tan\theta_{2}

{\underline{\boxed{\red{.\degree.m_{2}=tan\theta_{2}}}}}

______________________________________

If L_{1}||L_{2} then,

\implies \theta_{2}=90\degree +\theta_{1}

(by exterior angle property)

\implies tan\theta_{2}=tan(90+\theta_{1})

(Using tan both sides)

\implies tan\theta_{2}=-cot\theta_{1}

\large\purple {\boxed{\bf{\pink{ tan(90+\alpha) =-tan\alpha}}}}

\implies tan\theta_{2}=\dfrac{-1}{tan\theta_{1}}

\implies tan\theta_{1}\tan\theta_{2}=-1

{\underline{\boxed{\orange{.\degree.m_{1}m_{2}=-1}}}}

Hence proved.

Attachments:
Answered by Anonymous
3

Step-by-step explanation:

hope \: it \: will \: help \: u

Attachments:
Similar questions