Math, asked by lalitsaraswat1234, 11 months ago

prove that under root cosec A- 1/ cosecA + 1 + under root cosec A + 1/cosec A - 1= 2 sec A.

Answers

Answered by SachinGupta01
2

We have to prove that,

 \\  \implies \boxed{\sf \sqrt{ \dfrac{  cosec  \: A - 1}{cosec \: A   +  1} }  + \sqrt{ \dfrac{  cosec  \: A  + 1}{cosec \: A   -   1} } = 2 \sec \ A}

Solving LHS,

 \\  \implies \sf \sqrt{ \dfrac{  cosec  \: A - 1}{cosec \: A   +  1}  \times\dfrac{  cosec  \: A - 1}{cosec \: A    -   1} }  \:  + \:  \sqrt{ \dfrac{  cosec  \: A  + 1}{cosec \: A   -   1} \times\dfrac{  cosec  \: A  +  1}{cosec \: A     +    1}   }

 \\  \implies \sf \sqrt{ \dfrac{  (cosec  \: A - 1) ^{2} }{cosec^{2} \: A  -   1 }  }  \:  + \:  \sqrt{ \dfrac{  (cosec  \: A  + 1) ^{2} }{cosec^{2} \: A  -   1} }

 \\  \implies \sf \sqrt{ \dfrac{  (cosec  \: A - 1) ^{2} }{ \cot  ^{2} A  }  }  \:  + \:  \sqrt{ \dfrac{  (cosec  \: A  + 1) ^{2} }{\cot  ^{2}A} }

 \\  \implies \sf { \dfrac{  (cosec  \: A - 1)  }{ \cot   A  }  }  \:  + \:  { \dfrac{  (cosec  \: A  + 1)  }{\cot  A} }

 \\  \implies \sf { \dfrac{  cosec  \: A - 1 +  cosec  \: A  + 1 }{ \cot   A  }  }

 \\  \implies \sf { \dfrac{  2 \: cosec  \: A  }{ \cot   A  }  }

 \\  \implies \sf { \dfrac{  2 \:  \times  \frac{1}{ \sin A}   }{  \frac{ \cos A}{ \sin A} }  }

 \\  \implies \sf  \dfrac{2}{ \cancel{ \sin A }}  \times  \dfrac{ \cancel{ \sin A }}{ \cos A }

 \\  \implies \sf    \dfrac{2}{\cos A}

 \\  \implies  \boxed{\sf    2 \sec  A}

  • LHS = RHS

HENCE PROVED

Attachments:
Similar questions