Math, asked by Deependra7943, 9 months ago

Prove that under root Coseca -1/CosecA +1+under root cosec A+1/cosec A-1 = 2 tanA

Answers

Answered by dimnwobi591
0

Answer:

Step-by-step explanation:

We have to just simplify both side of the question.

Now, taking L. H. S =

(cosecA - sinA)×(secA - cosA)

= (1/sinA - sinA)×(1/cosA - cosA)

= (1-sin²A)/sinA × (1-cos²A)/cosA

= cos²A/sinA × sin²A/cosA

= cos²Asin²A/cosAsinA

= cosAsinA

Now, R. H. S =

1/(tanA + cotA)

= 1/(sinA/cosA + cosA/sinA)

= 1/[(sin²A + cos²A)/cosAsinA]

= 1/[(1/cosAsinA)]

= cosAsinA

Since L. H. S. = R. H. S.

Therefore the given equation is proof.

In such types of question you have to take care of braket and sign.

Thanks!

Similar questions