Prove that under root Coseca -1/CosecA +1+under root cosec A+1/cosec A-1 = 2 tanA
Answers
Answered by
0
Answer:
Step-by-step explanation:
We have to just simplify both side of the question.
Now, taking L. H. S =
(cosecA - sinA)×(secA - cosA)
= (1/sinA - sinA)×(1/cosA - cosA)
= (1-sin²A)/sinA × (1-cos²A)/cosA
= cos²A/sinA × sin²A/cosA
= cos²Asin²A/cosAsinA
= cosAsinA
Now, R. H. S =
1/(tanA + cotA)
= 1/(sinA/cosA + cosA/sinA)
= 1/[(sin²A + cos²A)/cosAsinA]
= 1/[(1/cosAsinA)]
= cosAsinA
Since L. H. S. = R. H. S.
Therefore the given equation is proof.
In such types of question you have to take care of braket and sign.
Thanks!
Similar questions
Music,
4 months ago
English,
4 months ago
India Languages,
4 months ago
Math,
9 months ago
Math,
9 months ago
English,
1 year ago
Computer Science,
1 year ago