Math, asked by security, 10 months ago

Prove that under root Coseca -1/CosecA +1+under root cosec A+1/cosec A-1 = 2 sec A

Answers

Answered by Anonymous
67
Hey there !!

Prove that :-

 \sqrt{ \frac{cosec \theta - 1}{ cosec \theta + 1} } +  \sqrt{ \frac{cosec \theta + 1}{cosec \theta - 1} }  = 2 \sec \theta. \\  \\

Solution :-

Solving LHS :-

 =  \sqrt{ \frac{cosec \theta - 1}{ cosec \theta + 1} } +  \sqrt{ \frac{cosec \theta + 1}{cosec \theta - 1} }   \\  \\   =  \sqrt{ \frac{cosec \theta - 1}{ cosec \theta + 1} \times  \frac{ \cosec \theta  -  1}{\cosec \theta  -  1}  } +  \sqrt{ \frac{cosec \theta + 1}{cosec \theta - 1}  \times  \frac{\cosec \theta + 1}{\cosec \theta + 1} } . \\  \\  =  \sqrt{ \frac{ {(\cosec \theta - 1)}^{2} }{ {\cosec}^{2}  \theta -  {1}^{2}  }  }  + \sqrt{ \frac{ {(\cosec \theta  + 1)}^{2} }{ {\cosec}^{2}  \theta -  {1}^{2}  }  } . \\  \\  =  \sqrt{ \frac{ {(\cosec \theta - 1)}^{2} }{ {  - \cot}^{2}  \theta} }  + \sqrt{ \frac{ {(\cosec \theta  +  1)}^{2} }{ {  - \cot}^{2}  \theta} } . \\  \\  =  \frac{ \cosec\theta - 1}{ \cot\theta}  +   \frac{ \cosec\theta  +  1}{ \cot\theta} . \\  \\  =  \frac{ \cosec\theta }{ \cot\theta}  -   \cancel\frac{1}{ \cot\theta}  +  \frac{ \cosec\theta}{ \cot\theta}  +   \cancel\frac{1}{ \cot\theta} . \\  \\  =  \frac{ \frac{1}{  \cancel{\sin\theta} }}{ \frac{ \cos\theta}{  \cancel{\sin\theta} }}  + \frac{ \frac{1}{  \cancel{\sin\theta} }}{ \frac{ \cos\theta}{  \cancel{\sin\theta} }}  . \\  \\  =  \frac{1}{ \cos\theta}  +  \frac{1}{ \cos \theta} . \\  \\  =  \sec \theta  +  \sec \theta. \\  \\  =  \boxed{ \boxed{ \pink{ = 2 \sec \theta.}}} \checkmark \checkmark.



•°• LHS = RHS .


✔✔ Hence, it is proved ✅✅.



THANKS



#BeBrainly.
Answered by wifilethbridge
32

Answer:

To prove :\sqrt{ \frac{cosec \theta - 1}{ cosec \theta + 1} } +  \sqrt{ \frac{cosec \theta + 1}{cosec \theta - 1} }  = 2 \sec \theta.

Solution :-

=  \sqrt{ \frac{cosec \theta - 1}{ cosec \theta + 1} } +  \sqrt{ \frac{cosec \theta + 1}{cosec \theta - 1} }

=  \sqrt{ \frac{cosec \theta - 1}{ cosec \theta + 1} \times  \frac{ \cosec \theta  -  1}{\cosec \theta  -  1}  } +  \sqrt{ \frac{cosec \theta + 1}{cosec \theta - 1}  \times  \frac{\cosec \theta + 1}{\cosec \theta + 1} } .

=  \sqrt{ \frac{ {(\cosec \theta - 1)}^{2} }{ {\cosec}^{2}  \theta -  {1}^{2}  }  }  + \sqrt{ \frac{ {(\cosec \theta  + 1)}^{2} }{ {\cosec}^{2}  \theta -  {1}^{2}  }  }

=  \sqrt{ \frac{ {(\cosec \theta - 1)}^{2} }{ {  - \cot}^{2}  \theta} }  + \sqrt{ \frac{ {(\cosec \theta  +  1)}^{2} }{ {  - \cot}^{2}  \theta} } .

= \frac{ \cosec\theta - 1}{ \cot\theta}  +   \frac{ \cosec\theta  +  1}{ \cot\theta} .

=  \frac{ \cosec\theta }{ \cot\theta}  -   \cancel\frac{1}{ \cot\theta}  +  \frac{ \cosec\theta}{ \cot\theta}  +   \cancel\frac{1}{ \cot\theta} .

=  \frac{ \frac{1}{  \cancel{\sin\theta} }}{ \frac{ \cos\theta}{  \cancel{\sin\theta} }}  + \frac{ \frac{1}{  \cancel{\sin\theta} }}{ \frac{ \cos\theta}{  \cancel{\sin\theta} }}

=  \frac{1}{ \cos\theta}  +  \frac{1}{ \cos \theta}

=  \sec \theta  +  \sec \theta.

=   2 \sec \theta

Hence proved

Similar questions