prove that using the identity
sec ²θ = 1 + tan² θ
sin θ - cos θ + 1 / sin θ + cos θ - 1
== 1 / sec θ - tan θ
Answers
Answered by
2
Answer:
=sinθ−cosθ+1sinθ+cosθ−1
=sinθcosθ−1+1cosθsinθcosθ+1−1cosθ
[ on dividing num. and denom. by cosθ ]
=tanθ−1+secθtanθ+1−secθ=(secθ+tanθ−1)(tanθ−secθ+1)
=(secθ+tanθ)−(sec2θ−tan2θ)(tanθ−secθ+1) [∵1=sec2θ−tan2θ]
=(secθ+tanθ)[1−(secθ−tanθ)](tanθ−secθ+1)
=(secθ+tanθ)(tanθ−secθ+1)(tanθ−secθ+1)=(secθ+tanθ).
RHS=1(secθ−tanθ)
=1(secθ−tanθ)×(secθ+tanθ)(secθ+tanθ)=(secθ+tanθ)(sec2θ−tan2θ)
=(secθ+tanθ) [∵sec2θ−tan2θ=1].
Hence,LHS=RHS.
Explanation:
dekho lo check kar kai
Similar questions