Math, asked by gaminglegacy4, 8 months ago

prove that whole root of 1 -cos2tita/ 1+cos2tita root = tan tita

Answers

Answered by Anonymous
27

1. (1 – cos2 A) cosec2 A = 1

Solution:

Taking the L.H.S,

(1 – cos2 A) cosec2 A

= (sin2 A) cosec2 A [∵ sin2 A + cos2 A = 1 ⇒1 – sin2 A = cos2 A]

= 12

= 1 = R.H.S

– Hence Proved

2. (1 + cot2 A) sin2 A = 1

Solution:

By using the identity,

cosec2 A – cot2 A = 1 ⇒ cosec2 A = cot2 A + 1

Taking,

L.H.S = (1 + cot2 A) sin2 A

= cosec2 A sin2 A

= (cosec A sin A)2

= ((1/sin A) × sin A)2

= (1)2

= 1

= R.H.S

– Hence Proved

3. tan2 θ cos2 θ = 1 − cos2 θ

Solution:

We know that,

sin2 θ + cos2 θ = 1

Taking,

L.H.S = tan2 θ cos2 θ

= (tan θ × cos θ)2

= (sin θ)2

= sin2 θ

= 1 – cos2 θ

= R.H.S

– Hence Proved

4. cosec θ √(1 – cos2 θ) = 1

Solution:

Using identity,

sin2 θ + cos2 θ = 1 ⇒ sin2 θ = 1 – cos2 θ

Taking L.H.S,

L.H.S = cosec θ √(1 – cos2 θ)

= cosec θ √( sin2 θ)

= cosec θ x sin θ

= 1

= R.H.S

– Hence Proved

5. (sec2 θ − 1)(cosec2 θ − 1) = 1

Solution:

Using identities,

(sec2 θ − tan2 θ) = 1 and (cosec2 θ − cot2 θ) = 1

We have,

L.H.S = (sec2 θ – 1)(cosec2θ – 1)

= tan2θ × cot2θ

= (tan θ × cot θ)2

= (tan θ × 1/tan θ)2

= 12

= 1

= R.H.S

– Hence Proved

6. tan θ + 1/ tan θ = sec θ cosec θ

Solution:

We have,

L.H.S = tan θ + 1/ tan θ

= (tan2 θ + 1)/ tan θ

= sec2 θ / tan θ [∵ sec2 θ − tan2 θ = 1]

= (1/cos2 θ) x 1/ (sin θ/cos θ) [∵ tan θ = sin θ / cos θ]

= cos θ/ (sin θ x cos2 θ)

= 1/ cos θ x 1/ sin θ

= sec θ x cosec θ

= sec θ cosec θ

= R.H.S

– Hence Proved

Answered by Divya25127
8
1. (1-cos2 A) cosec2 A =1

Solution:

Taking the L.H.s,

(1-cos2 A) cosec2 A

(sin2 A) cosec2 A [" sin2 A + cos2 A =11
- sin2 A = COs2 A]

= 12

= 1= R.H.S

- Hence Proved

2. (1 + cot2 A) sin2 A=1

Solution:

By using the identity.

Cosec2 A - cot2 A=1 cosec2 A = Cot2 A +

Taking,

L.H.S = (1+ cot2 A) sin2 A

= cosec2 A sin2 A

= (cosec A sin A)2

(1/sin A) * sin Aj2

= (1)2

=1

R.H.S

-Hence Proved

3. tan2 e cos2 9 =1-cos2

Solution:

We know that,

Sinz et coS2 61

Taking,

L.H.S =tan2 6 cos2 6

(tan& x Cos 8)2

(sin ).

= sin2 e

1-cos2 9

R.H.S

-Hence Proved

4. cosec 9 v(1- cos2 8) =1

Solution:

Using identity,

Sin2 e coS2 6 =19 Sin2 6=1-co52 6

Taking L.H.S.

L.H.S = Cosec e {1- cos2 68)

COsec 6 { sin2 e)

cosec x sin

=1

= R.H.S

- Hence Proved

5. (sec2 6- 1(cosec26-1)=1

Solution

Using identities,

(sec2 - tan2 6) = 1 and (cosec2 6 - cot2 e) =

1

We have,

LH.S = (sec2 - 1(cosec20 1)

= tan26 x cot26

(tan x cot 6)2


(tan e x 1tan 9)2

= 12

= 1

R.H.S

Hence Proved

6. tan +1/ tan 6 = sec 6 cosec

Solution

We have,

L.H.S = tan +1/ tan e

= (tan2 + 1/ tan

sec2 9/ tan 8 [ sec2 9- tan2 e =11

(1cos2 6) x V (sin e/cos 6) [: tan 6 = Sin 6

cos 6

= COs 6/ (sin 6 x cos2 8)

1/ cos 9 x 1/ sin 9

sec 8 x cosec

sec 6 cosec 6

R.H.S

-- Hence proved.....







Similar questions