Math, asked by MohdShaharyar, 1 year ago

Prove that (x^1/a-b)^1/a-c (x^1/b-c)^1/b-a (x^1/c-a)^1/c-b is equal to 1

Answers

Answered by aquialaska
2

Answer:

To Prove: (x^{\frac{1}{a-b}})^{\frac{1}{a-c}}\times(x^{\frac{1}{b-c}})^{\frac{1}{b-a}}\times(x^{\frac{1}{c-a}})^{\frac{1}{c-b}}=1

Consider,

LHS

=(x^{\frac{1}{a-b}})^{\frac{1}{a-c}}\times(x^{\frac{1}{b-c}})^{\frac{1}{b-a}}\times(x^{\frac{1}{c-a}})^{\frac{1}{c-b}}

=x^{\frac{1}{a-b}\times\frac{1}{a-c}}\timesx^{\frac{1}{b-c}\times\frac{1}{b-a}}\times(x^{\frac{1}{c-a}\times\frac{1}{c-b}}

=x^{\frac{1}{(a-b)(a-c)}\timesx^{\frac{1}{(b-c)(b-a)}\times(x^{\frac{1}{(c-a)(c-b)}

=x^{\frac{1}{(a-b)(a-c)}+\frac{1}{(b-c)(b-a)}+\frac{1}{(c-a)(c-b)}

=x^{\frac{1}{(a-b)(a-c)}+\frac{1}{(c-b)(a-b)}+\frac{-1}{(a-c)(c-b)}

=x^{\frac{(c-b)+(a-c)-(a-b)}{(a-b)(a-c)(c-b)}

=x^{\frac{c-b+a-c-a+b}{(a-b)(a-c)(c-b)}

=x^{\frac{0}{(a-b)(a-c)(c-b)}

=x^{0}

=1

= RHS

Hence Proved

Answered by Anonymous
1

Answer:

Hope it will help you...

Attachments:
Similar questions