Prove that: (x+1+i) (x+1-i) (x-1+i) (x-1-i)= x4
+4
Answers
Answered by
11
Answer:
(x+1+i)(x+1−i)(x−1+i)(x−1−i)
= [(x+1)2−i2][(x−1)2−i2]
= (x2 +2x+1+1)(x2−2x+1+1)
= [(x2 +2)+2x][(x2+2)−2x]
= (x2+2)2−4x2=x4+4x2+4−4x2=x4+4
pleAse thanks bhi kar diya karo
Answered by
4
Step-by-step explanation:
Taking RHS,
(x+1+i) (x+1-i) (x-1+i) (x-1-i)
= [(x+1+i) (x+1-i)][ (x-1+i) (x-1-i)]
=[(x+1)2-i2][(x-1)2-i2]
=[x2+1+2x+1][x2-2x+1+1]
=[(x2+2)+2x][(x2+2)-2x]
=x4+4x2+4-4x2
=x4+4
Regards
Similar questions