prove that x^3+y^3=(x+y)(x^2-xy+y^2)
Answers
Answered by
2
Answer:
Proving
x3−y3=(x−y)(x2+xy+y2)
Step-by-step explanation:
We know that
(x+y)^3=x^3+y^3+3xy(x+y)
(x+y)^3=x^3+y^3=(x+y)^3-3xy(x+y)
(x+y)^3=x^3+y^3=(x+y)[(x+y)^2-3xy] ( taking (x+y) common )
(x+y)^3= x^3+y^3=(x+y)[(x^2+2xy+y^2)-3xy] ( 2xy-3xy=xy )
(x+y)^3=(x−y)(x2+xy+y2)
LHS=RHS
Hence proved
Similar questions