prove that (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 have equal roots if a=b=c.
Answers
Answered by
3
Answer:
Step-by-step explanation:
→given if a=b=c
→so,
→[x-a].[x-b]+[x-b][x-c]+[x-c][x-a]=0
⇒3x²-[ 2{a+b+c} ] + ab+bc+ac=0
→as a=b=c
⇒3x²-[2{3a}]x + a.a+a.a+a.a=0
⇒3x²-6ax + 3a²=0
⇒x²-2ax+a²=0
→as we have formula -b±√b²-4ac÷2a
⇒2a±√4a²-4a²/2
⇒2a±√0/2
⇒2a/2
⇒a
Similar questions