prove that x cube + y cube + Z cube minus 3 x y z is equal to X + y +Z X square + Y square + Z square minus xy -yz minus z x
Answers
Answered by
86
we have to prove that ,
x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - zx)
proof : LHS = x³ + y³ + z³ - 3xyz
= (x³ + y³) + z³ - 3xyz
[from algebraic identity, a³ + b³ = (a + b)³ - 3ab(a + b) ]
= (x + y)³ - 3xy(x + y) + z³ - 3xyz
= {(x + y)³ + z³} - 3xy(x + y) - 3xyz
= {(x + y + z)³ - 3z(x + y)(x + y + z)} - 3xy(x + y) - 3xy
= (x + y + z)³ - 3z(x + y)(x + y + z)-3xy(x + y) - 3xyz
= (x + y + z)³ - 3z(x + y)(x + y + z) - 3xy(x + y + z)
= (x + y + z)[ (x + y + z)² - 3z(x + y) -3xy ]
[ from algebraic identity, (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca ]
= (x + y + z)[ x² + y² + z² + 2xy + 2yz + 2zx - 3zx - 3zy - 3xy ]
= (x + y + z) [ x² + y² + z² - xy - yz - zx ] = RHS
Similar questions