Math, asked by janasourav, 10 months ago

prove that x^(lny-lnz)×y^(lnz-lnx)×z^(lnx-lny)=1

Answers

Answered by MaheswariS
5

\textbf{To prove:}

x^{logy-logz}{\times}y^{logz-logx}{\times}z^{logx-logy}=1

\textbf{Solution:}

\textbf{Logarithmic notation:}

a^x=N\;\implies\;log_aN=x

\text{N can be written as,}\,N=a^{log_aN}

\text{Consider,}

x^{logy-logz}

=(e^{logx})^{logy-logz}

=e^{logx(logy-logz)}

=e^{logx\;logy-logx\;logz}

\implies\bf\,x^{logy-logz}=e^{logx\;logy-\logx\;logz}

\text{Similarly,}

y^{logz-logx}=e^{logy\;logz-logy\;logx}

z^{logx-logy}=e^{logz\;logx-logz\;logy}

\text{Now,}

x^{logy-logz}{\times}y^{logz-logx}{\times}z^{logx-logy}

=e^{logx\;logy-logx\;logz}{\times}e^{logy\;logz-logy\;logx}{\times}e^{logz\;logx-logz\;logy}

=e^{logx\;logy-logx\;logz+logy\;logz-logy\;logx+logz\;logx-logz\;logy}

=e^0

=1

\textbf{Answer:}

\boxed{\bf\,x^{logy-logz}{\times}y^{logz-logx}{\times}z^{logx-logy}=1}

Similar questions