Math, asked by pratykshtiwari05, 10 months ago

prove that ; (x power b upon x power c) whole power a ( x power c upon x power a ) whole power b ( x power a upon x power b ) = 1

Answers

Answered by CharmingPrince
21

{\huge{\underline{\underline{\sf {\mathfrak{Answer}}}}}}

{\underline{\underline{\rm {To \ prove:}}}}

  • \left( \dfrac{x^b}{x^c} \right)^a \ \left( \dfrac{x^c}{x^a}\right)^b \ \left( \dfrac{x^a}{x^b}\right)^c = 1

{\underline{\underline{\rm {Solving \ LHS:}}}}

  • \left( \dfrac{x^b}{x^c} \right)^a \ \left( \dfrac{x^c}{x^a}\right)^b \ \left( \dfrac{x^a}{x^b}\right)^c

  • ( x^{b - c})^a (x^{c - a})^b (x^{a-b})^c

  • x^{ab - ac} \ . \ x^{bc - ab} \ . \ x^{ac - bc}

  • x^{ab - ac + bc - ab + ac - bc}

  • x^0

\boxed{\implies{\boxed{1 = RHS}}}

Answered by QwertyPs
3

{\bold{\huge{\orange{Hèy Fríéñd}}}}

Here is the Solution..

{\boxed{Step\:By\:Step\: Solution}}

We Have :-

(\frac{x^b}{x^c})^a * (\frac{x^c}{x^a})^b * (\frac{x^a}{x^b})^c = 1

LHS :-

(\frac{x^{ab}}{x^{ac}}) * (\frac{x^{bc}}{x^{ab}}) * (\frac{x^{ac}}{x^{bc}}) \\ \\ x^{ab-ac} * x^{bc-ab} * x^{ac-bc} \\ \\ x^{ab-ac+bc-ab+ac-bc} \\ \\ x^{ab-ab+bc-bc+ac-ac} \\ \\ x^0 = 1

_______________

Therefore, LHS = RHS

{\boxed{\bold{\huge{\red{Hence\:Proved}}}}}

.

.

.

I Hope This Will Help You

## Thanks ##

Similar questions