Math, asked by khushi436695, 9 months ago

Prove that : | x × y | = |x|×|y| ,if x= -4/5 and y= 3/-7

solve with explanation​

Answers

Answered by Anonymous
122

\huge\underline\bold\red{Question}

Prove that: |x × y| = |x|×|y|, if

x=\frac{-4}{5} and\: \frac{3}{-7}

\huge\underline\bold\purple{Solution}

We have to prove | x × y | = |x|×|y|

{\boxed{\green{ x=\frac{-4}{5} and\: y=\frac{-3}{7}}}}

 LHS = |x \times y|

{\boxed{\green{x=\frac{-4}{5}and\: y=\frac{-3}{7}}}}

 = | (\frac{ - 4}{5}) \times (\frac{ - 3}{7} )|

 = | \frac{12}{35} |

 = \dfrac{12}{35}

RHS = |x| \times |y|

{\boxed{\green{put \:the \:value \:of\: \:x \:and\:y}}}}

 = \frac{ - 4}{5} ×\frac{ - 3}{7}

= \frac{4}{5} × \frac{3}{7}

 = \frac{12}{35}

{LHS=RHS

{Hence \:proved}

Answered by Anonymous
100

Question :

Prove that | x × y | = |x|×|y|

if x=\frac{-4}{5} and y=\frac{-3}{7}

Modulus Function :

The function f(x) defined by f(x)= |x|

\bf{f(x)}\begin{cases}\sf{x,when\:x \geqslant\:0}\\ \sf{-x,when\:x< 0}\end{cases}}

Solution :

We have to prove | x × y | = |x|×|y|

if x=\frac{-4}{5} and y=\frac{-3}{7}

LHS

 =  |x \times y|

put x=\frac{-4}{5} and y=\frac{-3}{7}

 =  | (\frac{ - 4}{5})  \times  (\frac{ - 3}{7}  )|

 =  | \frac{12}{35} |

 =  \dfrac{12}{35}

RHS

 =  |x| \times |y|

put the value of x & y

 =  | \frac{ - 4}{5} |  \times  | \frac{ - 3}{7} |

Here |x| , x>0 i.e |-x| = -(-x)

 =  \frac{4}{5} \times  \frac{3}{7}

 =  \frac{12}{35}

⇒LHS = RHS

Hence proved __________________________

More About Modulus Function :

1)For any real number x, √ x² = |x|

2) Modulus Function : It is also called absolute value function.

Similar questions