Math, asked by HARISHBABU260, 1 year ago

Prove that x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx)

Answers

Answered by SnowySecret72
11

Proof:-

We have

({x}^{3} +  {y}^{3} +  {z}^{3} - 3xyz) = ( {x}^{3} +  {y}^{3}) +  {z}^{3} - 3xyz

( {x}^{3} +  {y}^{3}) - 3xy(x + y) +  {z}^{3} - 3xy

Let (x+y)=u

 {u}^{3} - 3xyu +  {z}^{3} - 3xyz

( {u}^{3} +  {z}^{3}) - 3xy(u + z)

(u + z)( {u}^{2} - uz +{z}^{2}) - 3xy(u + z)

(u + z)( {u}^{2} +{z}^{2} - uz - 3xy)

(x + y + z) {(x + y)}^{2} +{z}^{2} - (x + y)z - 3xy

(x + y + z)( {x}^{2} +{y}^{2} +  {z}^{2} - xy - yz - zx)

Therefore

( {x}^{3} +{y}^{3} +{z}^{3} - 3xyz) = (x + y + z)( {x}^{2}+{y}^{2} + {z}^{2} - xy - yz - zx)

Answered by Anonymous
9

SEE ATTACHMENT

THANKS

Attachments:
Similar questions