Math, asked by manu1121, 1 year ago

Prove that x3 y3 z3 - 3xyz = [x y z] [x2 y2 z2 - xy -yz - zx]


manu1121: it is an identity
Aaryadeep: hey
manu1121: hiii
Aaryadeep: i will send a pic in sometimes
manu1121: okk .. no problem

Answers

Answered by Aaryadeep
41
Hi see this PIC for your answer.
Attachments:
Answered by mysticd
17

Answer:

x^{3}+y^{3}+z^{3}-3xyz\\=(x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-zx)

Step-by-step explanation:

Proving\: algebraic\: identity:\\x^{3}+y^{3}+z^{3}-3xyz\\=(x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-zx)

RHS=(x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-zx)

=x(x^{2}+y^{2}+z^{2}-xy-yz-zx)\\+y(x^{2}+y^{2}+z^{2}-xy-yz-zx)\\+\\z(x^{2}+y^{2}+z^{2}-xy-yz-zx)

=x^{3}+xy^{2}+xz^{2}-x^{2}y-xyz-zx^{2}\\+x^{2}y+y^{3}+yz^{2}-xy^{2}-y^{2}z-xyz\\+x^{2}z+y^{2}z+z^{3}-xyz-yz^{2}-z^{2}x

=x^{3}+y^{3}+z^{3}-3xyz\\=LHS

Therefore,.

x^{3}+y^{3}+z^{3}-3xyz\\=(x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-zx)

•••♪

Similar questions