Math, asked by pankajsambyal14, 4 months ago

prove the angle subtended by an arc at the centre is twice the angle the angle in remaining part of circle

Answers

Answered by lavish272007
2

ACB ar any point C on the remaining part of the circle .

TO PROVE :- /_ AOB = 2( /_ ACB)

CONSTRUCTION :- join CO and produce it to any point D

PROOF :-

OA = OC [radii of same circle ]

/_ OAC = /_ ACO

[angles opp to equal side's of a triangle are equal]

/_ AOD = /_OAC + /_ACO

[ext angles = sum of equal opp angles]

/_AOD = 2(/_ACO)-------------(1)

[/_OAC = /_ACO]

similarly,

/_ DOB = 2(/_OCB) -------------(2)

In fig (i) and (iii)

adding (1) And (2)

/_AOD + /_ DOB = 2(/_ACO) + 2(/_OCB)

/_AOD + /_ DOB = 2(/_ACO + /_OCB)

/_AOB = 2(/_ACB)

In fig (ii)

subtracting (1) from (2)

/_DOB - /_DOA = 2(/_OCB - /_ACO)

/_AOB = 2(/_ACB)

hence in all cases we see

/_AOB = 2(/_ACB)

(proved)

hope u like it

Answered by Anonymous
19

Answer:

Given :

An arc PQ of a circle subtending angles POQ at the centre O and PAQ at a point A on the remaining part of the circle.

To prove : ∠POQ=2∠PAQ

To prove this theorem we consider the arc AB in three different situations, minor arc AB, major arc AB and semi-circle AB.

Construction :

Join the line AO extended to B.

Proof :

∠BOQ=∠OAQ+∠AQO (1)

Also, in △ OAQ,

OA=OQ [Radii of a circle]

Therefore,

∠OAQ=∠OQA [Angles opposite to equal sides are equal]

∠BOQ=2∠OAQ (2)

Similarly, BOP=2∠OAP (3)

Adding 2 & 3, we get,

∠BOP+∠BOQ=2(∠OAP+∠OAQ)

∠POQ=2∠PAQ (4)

For the case 3, where PQ is the major arc, equation 4 is replaced by

Reflex angle, ∠POQ=2∠PAQ

Attachments:
Similar questions