Math, asked by shreya6420, 1 year ago

Prove the angle sum property theorem of triangle :
The sum of the angles is 180°

Answers

Answered by Anonymous
4

Theorem

If ABC is a triangle then <)ABC + <)BCA + <)CAB = 180 degrees.

Proof

Draw line a through points A and B. Draw line b through point C and parallel to. line a.

Since lines a and b are parallel, <)BAC = <)B'CA and <)ABC = <)BCA'.

It is obvious that <)B'CA + <)ACB + <)BCA' = 180 degrees.

Thus <)ABC + <)BCA + <)CAB = 180 degrees.

Lemma

If ABCD is a quadrilateral and <)CAB = <)DCA then AB and DC are parallel.

Proof

Assume to the contrary that AB and DC are not parallel.

Draw a line trough A and B and draw a line trough D and C.

These lines are not parallel so they cross at one point. Call this point E.

Notice that <)AEC is greater than 0.

Since <)CAB = <)DCA, <)CAE + <)ACE = 180 degrees.

Hence <)AEC + <)CAE + <)ACE is greater than 180 degrees.

Contradiction. This completes the proof.

Definition

Two Triangles ABC and A'B'C' are congruent if and only if

|AB| = |A'B'|, |AC| = |A'C'|, |BC| = |B'C'| and,

<)ABC = <)A'B'C', <)BCA = <)B'C'A', <)CAB = <)C'A'B'.

Hope this helps you mate ☺️☺️⭐⭐✌️✌️

Attachments:
Answered by Anonymous
5

\huge\bf{Answer:-}

Refer the attachment.

Attachments:
Similar questions